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Abstract
We calculate coherent, third-order, nonlinear spectra of a pair of quantum dots by solving the
nonlinear exciton equations, which include relevant single-exciton and two-exciton variables.
The signals carry direct information on exciton dynamics and correlations. Spectra calculated
with the time-dependent Hartree–Fock approximation, where the two-exciton variables are
factorized, miss some important features, attributed to correlated electron–hole pairs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of optical excitations in quantum dots has been
a major focus of semiconductor physics over the past
decade [1, 2]. Their unique physical properties have drawn
attention from diverse fields such as laser physics [3, 4],
quantum information [5, 6], and medical diagnostics [7, 8].
Precise growth of multiple quantum dots is possible [9], pairs
of dots with ∼10 nm spacing were grown on a semiconductor
substrate [10]. Their optical properties are described in
terms of single and multiple excitons [11–14]. Correlations
between these quasiparticles determine the nonlinear optical
response [15].

An advanced class of four-wave-mixing techniques,
known as two-dimensional spectroscopy, has become an
important tool for studying both vibrational and electronic
coherences [16–18] in a broad range of systems such as
liquid methane [19], rubidium vapor [20], and light-harvesting
complexes [21]. Recently, these powerful methods have been
applied successfully to semiconductor quantum wells [22–24]
and quantum dots (QDs) [25]. Two-dimensional experimental
spectra display a variety of features, that can be directly
linked to coherences created by interaction with light on the
femtosecond time scale.

In this paper we compute two-dimensional correlation
spectra of coupled QDs using a simple tight-binding
Hamiltonian [26]. Owing to Coulomb interactions and the non-
bosonic nature of excitons, the Heisenberg equations of motion
for polarization couple to higher dynamical variables, which
opens an infinite hierarchy of coupled quantities. We truncate
this hierarchy at two levels [27]. The first, derived within
the nonlinear exciton equations (also known as dynamics
controlled truncation) scheme, retains the four-point variables
(Y ) required to describe signals to third order in the field. This
approach yields exact many-body wavefunctions and levels
for the pair-conserving Hamiltonian used in this paper. The
second truncation scheme, based on time-dependent Hartree–
Fock (THDF) approximation, neglects correlations between
excitons by factorizing the Y variables and uses only two-point
quantities. It is widely employed owing to its simplicity and
smaller computational requirements [14].

The resulting equations of motion can be solved by
direct numerical integration [24, 28, 29]. In this paper,
however, in order to gain a better insight into the nature
of the optical response, we use Green’s functions to solve
the equations formally and derive closed expressions for
the third-order response functions. We compare the TDHF
response functions with the nonlinear exciton equation (NEE)
expressions reported earlier [30, 31]. These formulas allow
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us to predict some general features of the two-dimensional
spectra before performing numerical calculations. We next
present the results of our NEE and TDHF calculations for
two techniques used in two-dimensional spectroscopy. We
show that the TDHF response functions miss some important
features of the full NEE response.

The outline of the paper is as follows: in section 2
we define the two-band electron–hole Hamiltonian used to
describe quantum dot systems. We also give the Heisenberg
equations of motion and the TDHF factorization. In
section 3 we compare the TDHF response functions to their
NEE counterparts. Numerical results obtained from both
expressions are presented in section 4, and a general discussion
follows in section 5.

2. The NEE and the TDHF equations of motion for a
two-band Hamiltonian

We start with a tight-binding, two-band Hamiltonian, where
each site at a position R represents one QD with two single-
electron levels

H = H0 + HC + HL. (1)

The one-particle part H0, which accounts for electron and
hole hopping between the QDs, can be written in the form of
equation (B1) of [32]

H0 =
∑

m1,n1

t (1)m1,n1
c†

m1
cn1 +

∑

m2,n2

t (2)m2,n2
d†

m2
dn2,

where the indices are m1 = (Re1 , σe1 ), n1 = (Re2 , σe2 ),
m2 = (Rh1, σh1), n2 = (Rh2 , σh2), σ is the spin projection
and the Fermi operators c (d) annihilate electrons (holes). Re

(Rh) is the electron (hole) position.
The many-body part HC describes monopole–monopole

Coulomb interactions

HC = −
∑

m1,m2

V eh
m1m2

c†
m1

d†
m2

dm2cm1

+ 1
2

∑

m1,n1

V ee
m1n1

c†
m1

c†
n1

cn1cm1 + 1
2

∑

m2,n2

V hh
m2n2

d†
m2

d†
n2

dn2dm2 .

(2)

This simple model, which neglects some Coulomb (exchange
and four-point) integrals is known to describe correctly the
influence of many-body correlations on optical spectra of
semiconductors [26].

We treat the interaction with light in the dipole
approximation:

ĤL = −E(t) · P̂

= −E(t) ·
(
∑

m1,m2

µ∗
m1m2

c†
m1

d†
m2

+ µm1m2
dm2 cm1

)
,

where µ are the on-site dipole matrix elements and E(t) =
E+(t) exp(ikr − iωt)+ E−(t) exp(−ikr + iωt).

Electron–hole (e–h) pairs are responsible for the
fundamental resonances with energies close to the band-gap.
We therefore follow the quasiparticle approach of [32], where
the Hamiltonian (1) was recast in terms of electron–hole
operators B̂n = dn2cn1 . Next, the Heisenberg equations of

motion (EOM) for the expectation values Bn = 〈B̂n〉 were
derived to obtain the polarization P . The hierarchy of multi-
point quantities was truncated by retaining only the two-point
Bn = 〈dn2 cn1〉 and the four-point Ymn = 〈dm2 cm1 dn2cn1〉 =
〈Bm Bn〉 [33]. The resulting NEE, expanded in orders of the
laser field E(t) (indicated by superscripts) are

i
dB(1)

m

dt
=
∑

n

hmn B(1)
n − µ∗

mE+(t),

i
dY (2)

mn

dt
=
∑

k,l

h(Y )mn,kl Y
(2)
kl − E+(t)(B(1)

n µ∗
m

+ B(1)
m µ∗

n)+ 2E+(t)
∑

k,l

Pmnkl B(1)
k µ∗

l ,

i
dB(3)

m

dt
=
∑

n

hmn B(3)
m +

∑

n,k,l

Ṽmnkl B(1)∗
n Y (2)

kl

+ 2E+(t)
∑

n,p,q

Pmnpq B(1)∗
n B(1)

q µ∗
p.

(3)

hmn is the Hamiltonian H0 + HC projected on singly excited
states. The m, n indices run over all (2N)2 possible e–h pairs,
where N is the number of sites (QDs). The (2N)4 × (2N)4

tetradic matrices h(Y )mn,kl and Ṽmnkl are defined [32] by the
parameters appearing in H0 and HC. We use the rotating
wave approximation and set h̄ = 1. Dephasing will be added
phenomenologically in the final formulas.

The two source terms in the equation for B(3)
m represent

the Coulomb interaction and Pauli blocking, respectively. The
operator P , equation (A.1), represents the commutation rules
of the B̂n operators

Pmnpq = 1
2

(
δm1q1δn1 p1δm2 p2δn2q2 + δm1 p1δn1q1δm2q2δn2 p2

)
. (4)

The TDHF approximation to the NEE is introduced by
factorizing the two-exciton variable Ymn � 〈dm2 cm1〉〈dn2 cn1〉−
〈dm2 cn1〉〈dn2 cm1〉 [34]. In terms of the exciton variables it reads

Ymn = 〈Bm Bn〉 �
∑

p,q

(I − P)mnpq Bp Bq . (5)

Using equation (5) we obtain the following TDHF equations of
motion

i
dB(1)

m

dt
=
∑

n

hmn B(1)
n − µ∗

mE+(t),

i
dB(3)

m

dt
=
∑

n

hmn B(3)
m

+
∑

n,k,l

∑

p,q

Ṽmnkl (I − P)klpq B(1)∗
n B(1)

p B(1)
q

+ 2E+(t)
∑

n,p,q

Pmnpq B(1)∗
n B(1)

q µ∗
p.

(6)

The factorization (5) neglects the correlated part of 〈Bm Bn〉.
Thus equations (6) are an approximation to equations (3).
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3. Two-dimensional signals

The EOM for both factorizations, equations (3) or (6), can be
formally solved using Green’s functions to obtain

Pν4(τ4) =
∫ +∞

0
dt3 dt2 dt1Sν4ν3ν2ν1(t3, t2, t1)

× Eν3(τ4 − t3)Eν2(τ4 − t2 − t3)Eν1(τ4 − t1 − t2 − t3),

(7)

where P(τ4) is the polarization at time τ4, the tensor
Sν4ν3ν2ν1 is the response function, t1, t2, t3 are delays between
light pulses and νi are Cartesian components of the pulses’
polarizations. [30] We focus on three types of four-wave-
mixing signals generated along the phase matching directions
kI = −k1 + k2 + k3, kII = k1 − k2 + k3 and kIII = k1 +
k2 − k3, where k1, k2 and k3 are the wavevectors of the three
incoming pulses. A useful visualization of the information
carried by the response function S(t3, t2, t1) is obtained by
Fourier transforming it with respect to two of the time delays.
We choose them to be t1 and t3 for the kI and kII techniques,
while for kIII we take t2 and t3 [35]. We denote the frequency
conjugate to tj by �j.

Both NEE and TDHF response functions S are expressed
using the tetradic, (2N)4 × (2N)4 exciton scattering matrix �.
For the NEE it is defined as

�NEE(ω) = [
I − Ṽ G(ω)

]−1
Ṽ G(ω) (I − P)

× G(ω)−1 − PG(ω)−1, (8)

while for the TDHF

�TDHF(ω) = Ṽ (I − P)− PG(ω)−1, (9)

where Ge2e1(ω) = (ω − εe2 − εe1 + iγe2 + iγe1)
−1 (cf3).

Below we give the response functions for the three
techniques. We introduce decoherence effects by adding
dephasing rates iγe to single-exciton energies εe. This is
adequate in many physical situations [31].

The response function for kI is:

Sν4ν3ν2ν1
I (�3, t2,�1) = 2i

∑

e1...e4

μν1
e1
μν2∗

e2
μν3∗

e3
μν4

e4

× I ∗
e1
(t2) Ie2 (t2) I ∗

e1
(−�1) Ie4 (�3)

× �e4e1e2e3

(
�3 + εe1 + iγe1

)
Ge3e2

(
�3 + εe1 + iγe1

)
,

(10)

where Ie(ω) = (ω − εe + iγe)
−1 and Ie(t) =

−iθ(t) exp(−iεet − γet).
For kII we find

Sν4ν3ν2ν1
II (�3, t2,�1) = −2i

∑

e1...e4

μν1∗
e1
μν2

e2
μν3∗

e3
μν4

e4

× I ∗
e2
(t2)Ie1 (t2)Ie1(�1)Ie4 (�3)

× �e4e2e3e1(�3 + εe2 + iγe2)Ge3e1(�3 + εe2 + iγe2). (11)

Finally, the kIII signal is given by

Sν4ν3ν2ν1
III (�3,�2, t1) = 2

∑

e1...e4

μν1∗
e1
μν2∗

e2
μν3

e3
μν4

e4

× Ie1 (t1) Ie4 (�3) I ∗
e3
(�2 −�3)

× {�e4e3e2e1(�3 + εe3 + iγe3)Ge2e1(�3 + εe3 + iγe3)

− �e4e3e2e1(�2)Ge2e1(�2)}. (12)

3 In [31] we used the symbol G0 instead of G to distinguish this quantity from
other Green’s functions.

The term PG−1 in equations (8) and (9), which arises from
Pauli blocking (exciton statistics), cancels out in equation (12).
Such cancellation does not occur for the kI or kII techniques.
This important difference between the techniques will be
discussed in section 5.

The TDHF response function for kIII is more easily
analyzed when transformed to

Sν4ν3ν2ν1
III,TDHF(�3,�2, t1)

= 2
∑

e1...e4

μν1∗
e1
μν2∗

e2
μν3

e3
μν4

e4
Ie1(t1)Ge2e1(�2)

× Ie4(�3)Ge2e1

(
�3 + εe3 + iγe3

) [
Ṽ (I − P)]e4e3e2e1

.

(13)

Equations (10)–(12) are obtained after symmetrizing Ṽ
with respect to permutation of the two last indices, as shown
in appendix B.

4. Numerical simulations

We first describe briefly some general features of kI and kIII

spectra (kII is qualitatively similar to kI and will not be further
considered). Next we explain the choice of the QD parameters
and present the numerical results.

From equation (10) for kI, we see that for both NEE
and TDHF, the �1 coordinate of any peak corresponds to
minus single-exciton energy, �1 � −εe1 . For TDHF the �3

resonances (i.e. small values of the denominators) appear at
either�3 � εe4 or�3 � (εe2 +εe3)−εe1 . Peaks in the absolute
value of the response function only exist for μe1μe4 �= 0 in the
former case, and for μe1μe2μe3 �= 0 in the latter case. For the
TDHF kIII response function, equation (13), a resonance along
the �2 axis appears if �2 � εe1 + εe2 and μe1μe2 �= 0. Along
�3, it has the same resonances as for kI.

This analysis allows us to predict the peak positions
for the TDHF, but not for the NEE, where the scattering
matrix (8) has a complicated frequency dependence. Thus we
shall analyze the NEE response using sum-over-states (SOS)
expressions [31, 36, 44], which allow an easy classification of
spectral features. In most cases, however, they are not useful
for calculating the spectra, since the SOS approach requires the
calculation of doubly excited energies and wavefunctions [37].
This is avoided by using the NEE or TDHF approaches.

We use a set of parameters for InGaAs quantum dots,
where the valence (conduction) band is constructed of p (s)
orbitals. The initially occupied single-particle level of each QD
is derived from bulk heavy-hole states with angular momentum
quantum numbers |J,M〉 equal to | 3

2 ,
3
2 〉 or | 3

2 ,− 3
2 〉. The

empty level is derived from conduction band states | 1
2 ,

1
2 〉,

| 1
2 ,− 1

2 〉. The on-site energies for electrons (εe) and holes (εh)
in H0 are defined by the band-gap and quantum confinement.
They can be extracted from pseudopotential calculations [38].
To simplify the analysis of the spectra, we omit these energies,
they can be simply reintroduced by shifting the�1 (�3) values
up (down) by Eg = εe + εh in the results for kI (figures 1
and 2). For kIII (figures 3–5) the �2 (�3) values must be
shifted up by 2Eg (Eg). We assume that only on-site (single
QD) dipole moments are non-zero μRe,σe;Rh,σh ∼ δRe,Rh . For
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(a)

(b)

(c)

Figure 1. Absolute value of NEE (panel (a)) and TDHF (panel (b))
response functions for the kI technique obtained for system W of two
weakly coupled quantum dots and xxxx polarization. The axes �3

and�1 are Fourier transforms of the delays t3 and t1 between laser
pulses. The vertical line joining the panels indicates the diagonal
peak at (�3, �1) = (−V (0), V (0)), which is common to both
spectra. Panel (c) many-particle levels of system W; the ground,
single-exciton, and double-exciton levels are marked by g, εi and εfi ,
respectively.

excitations from the | 3
2 ,

3
2 〉 level we assume µσe,↑ = 1√

2
μ0(x̂ +

iŷ)δσe,↑, while for excitations from the | 3
2 ,− 3

2 〉 level: μσe,↓ =
1√
2
μ0(x̂ − iŷ)δσe,↓ [39].

All parameters of HC depend on the distance between
two sites, e.g., V eh

m1n1
= V eh(Re1 − Re2). We extracted

V eh(0) (e–h interaction on the same dot) and V eh(1) (e–
h interaction between two QDs) values from the transition
energies calculated for double QDs, which agree qualitatively
with emission spectra of pairs of InAs/GaAs QDs with varying
distances [40].

For a single InGaAs QD the V ee(0) and V hh(0) are
approximately equal to V eh(0) [41]. We assume that this
approximate equality holds also for V (1) for pairs of coupled
QDs. We write V ee(i) = V hh(i) = aV eh(i) with i = 0, 1,
where a defines the asymmetry of the interactions. For a =
1 (symmetric interactions) a single QD system described by
H0 + HC becomes harmonic, in the sense that the doubly
excited state’s energy εf is exactly twice the singly excited state
εe energy, εf = 2εe [42].

We used two QD systems in our simulations. The first
(system W), consists of two weakly coupled (d ∼ 10 nm)
quantum dots with the interaction asymmetry a = 0.9. For
this spacing the hopping t can be neglected, while the dots are
still coupled by Coulomb interaction. We use V (0) � 24 and
V (1) � 5 meV.

In the second system (S) we assume an inter-dot spacing
of 5 nm. The dots are thus strongly coupled with a hopping

(a)

(b)

(c)

Figure 2. Absolute value of NEE (panel (a)) and TDHF (panel (b))
response functions for the kI technique obtained for system S of two
strongly coupled quantum dots and xxxx polarization. The two
horizontal rows of peaks correspond to two single-exciton bright
states at −33 and −0.5 meV. Panel (c) many-particle levels; the
ground, single-exciton and double-exciton levels are marked by g, εi

and ε fi respectively.

Figure 3. Absolute value of NEE and TDHF response functions for
the kIII technique obtained for system W of two weakly coupled
quantum dots and xxxx polarization. Peaks A, B, C and D are at
(εf1 − ε1, εf1), (εf2 − ε1, εf2 ), (ε1, εf2 ), and (ε1, εf1 ), respectively.

t � 7 meV, assumed to be the same for electrons and holes.
The Coulomb interactions are taken to be symmetric, a = 1,
with V (0) � 24 and V (1) � 10 meV.
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All wavefunctions can be grouped according to the spins
of electrons and holes: (σe, σh) for the single excitations and
(e = σe1 + σe2 ,h = σh1 + σh2) for double excitations,
where σe,h = ±1. Since the hoppings t (1,2) are spin diagonal,
subspaces with different (σe, σh) or (e,h) are not coupled
to each other. Single-exciton states (σe = ±1, σh = ±1)
are at least fourfold degenerate. Wavefunctions constructed
in the (σe, σh) = (+1,−1), (−1,+1) and (e,h) =
(0,±2), (±2, 0), (2,−2), (−2, 2) subspaces are optically
forbidden. The subspaces (2, 2) and (−2,−2) are one-
dimensional, with states formed by placing one exciton on each
dot. The exact eigenenergy of these states is −2V (0) and does
not depend on the hopping. The (0, 0) subspace contains 16
wavefunctions, coupled by hopping in the case of system S.

We set t2 = 0 (t1 = 0) for the kI (kIII) techniques. We
use a small dephasing rate (γ ∼ 10−3 meV) to obtain high-
resolution spectra.

4.1. The kI technique

To analyze the TDHF spectra we use equations (10) and (9).
For the NEE we use the SOS formula [31]

Sν4ν3ν2ν1
I (�3, t2 = 0,�1) = i

∑

e,e′

μ
ν1
ge′

�1 + εe′ + iγe′g

×
⎡

⎣
∑

f

μν2
egμ

ν3
feμ

ν4
e′f

�3 − (εf − εe′)+ iγfe′

−
μν4

ge

(
μν2

egμ
ν3
e′g + μ

ν2
e′gμ

ν3
eg

)

�3 − εe + iγeg

⎤

⎦ , (14)

where g stands for the ground state with zero energy, e, e′
denote singly excited states and f runs over the doubly excited
manifold. γfe and γeg are dephasing rates of the corresponding
density matrix elements.

Equation (14) predicts two types of resonances along the
�3 axis. The first, �3 � εe, is analogous to the TDHF
response. The second, �3 � εf − εe′ , coincides with its TDHF
counterpart only for systems where the doubly excited energies
are sums of the singly excited ones.

System W has two single-exciton levels, bright (1) and
dark (2). The former, with both quasiparticles on one dot,
has energy ε1 = −V (0). The latter corresponds to electron
and hole on different QDs, and ε2 = −V (1). There are two
optically allowed double-exciton levels (figure1(c)); f1 ( f2)

with two excitons on the same (different) dot. Their energies
are −4V eh(0)+ V ee(0)+ V hh(0) and −2V eh(0)− 2V eh(1)+
V ee(1)+ V hh(1), respectively.

For this model, the TDHF response has a single peak
at (�3,�1) = (ε1,−ε1), (figure 1(b)), as follows from our
above analysis. As predicted by equation (14), the NEE spectra
reveal, in addition to the diagonal (ε1,−ε1) feature, two peaks
at �3 � εf1 − ε1 � −29 meV (both excitons on the same QD)
and �3 � εf2 − ε1 � −25 meV (each exciton on a different
QD). These peaks are below the diagonal one with respect to
the �3 axis, because a = 0.9 implies a reduced electron–
electron and hole–hole repulsion as compared to electron–hole

attraction. For a > 1 (not shown) the repulsions prevail and the
two double-exciton peaks appear above the single-exciton one,
this corresponds to unbound biexciton in semiconductor bulk
and quantum wells. This regime can be accessed in the type-II
QDs, where electrons are spatially separated from holes [43].
For a = 1.0, εf1 = εf2 = 2ε1 and the NEE response collapses
to the diagonal peak seen in the TDHF response.

System S has four single-exciton levels (figure 2(c)), ε1 =
−33, ε2 = −24, ε3 = −10, and ε4 = −0.5 meV, where levels
2 and 3 are dark. Both TDHF and NEE response functions
are resonant at �1 � −ε1,4. The possible resonances for the
TDHF can appear at�3 � ε1, ε4, 2ε4 − ε1 and 2ε1 − ε4. Some
pairs of these (�3,�1) values do not correspond to peaks in
the spectra. For example taking �1 � −ε1 (upper row in
figure 2(b)), there can be no peak at �3 � 2ε1 − ε4, as evident
from equations (9) and (10).

Each row in the NEE spectrum contains more peaks
than for the TDHF (figure 2(a)). To assign the peaks using
equation (14) one needs to know the number of optically
allowed doubly excited states along with their energies. This
information is obtained more directly from the kIII spectra,
which we present next.

4.2. The kIII technique

The differences between the NEE and the TDHF response are
more pronounced for the kIII technique. The TDHF response is
given by equation (13), while the NEE one can be conveniently
analyzed with the help of the SOS formula

Sν4ν3ν2ν1
III (�3,�2, t1 = 0) = i

∑

e,e′,f

μν1
egμ

ν2
fe

�2 − εf + iγfg

×
[

μ
ν4
ge′μ

ν3
e′f

�3 − (εf − εe′)+ iγfe′
− μ

ν3
ge′μ

ν4
e′f

�3 − εe′ + iγe′g

]
. (15)

We present simulations with all pulses either linearly (xxxx) or
circularly (RRRR) polarized. Similarly to kI, equation (14),
there are the two types of resonances along �3.

The bright single-exciton states of system W give a
resonance at �2 � 2ε1 for TDHF. Thus there is only one
peak in the TDHF spectrum with (�3,�2) = (ε1, 2ε1) =
(−V (0),−2V (0)), figure 3(b). The NEE calculations reveal
two rows of resonances along �2; at εf1 and εf2 . The second
term in the square brackets of equation (15) gives rise to
a resonance analogous to the TDHF; �3 � −V (0). The
condition μge′ �= 0 allows for appearance of two peaks:
(�3,�2) = (ε1, εfi ), i = 1, 2. The first term in equation (15)
leads to resonances at (�3,�2) = (εfi −ε1, εfi ). The calculated
NEE spectrum is depicted in figure 3(a).

Employing equation (13) to analyze the TDHF response of
system S, we find�2 resonances at 2ε1, 2ε4 and ε1+ε4. Similar
to kI, peaks appear only for some of (�3,�2) resonances due
to the selection rules, figure 4(b). Two TDHF peaks marked
by white arrows can only be revealed by studying the sign of
the imaginary or real part of SIII. These peaks are masked
by features C and D, since the former are given by the 1

�3−ε
factor (from Ie4 ), while the latter by the double resonances

1
�3−ε

1
�3+ε−2ε (from Ie4 Ge2e1 ). The double �3 resonances also

5
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Figure 4. Absolute value of the NEE and TDHF response functions
for the kIII technique obtained for system S of two strongly coupled
quantum dots and xxxx polarization. Panel (a) the arrow indicates
peaks corresponding to εf2 . Panel (b) peaks A, B, C, D, E and F are at
(2ε1 − ε4, 2ε1), (ε1, 2ε1), (ε1, ε1 + ε4), (ε4, ε1 + ε4), (ε4, 2ε4), and
(2ε4 − ε1, 2ε4), respectively. White arrows indicate two additional
peaks not visible due to their proximity to C and D.

result in differences between peak width along �3 and along
�2, observed for some peaks in the TDHF spectra.

The NEE has more peaks than the TDHF, same as for
system W. As seen from figure 4(a), there are four optically
allowed doubly excited levels. The energy of the states
with (e,h) = (2, 2) and (−2,−2) is εf2 = −48 meV.
Diagonalization of the (0, 0) block reveals that all states are
grouped into 9 levels. States corresponding to 4 of these
levels are antisymmetric with respect to exchanging electrons
and holes between dots (spatial symmetry) and therefore are
optically forbidden. States in a (triply degenerate) spatially
symmetrical level are forbidden due to other antisymmetries
(either spin flip of all particles or e–h interchange on each
QD). There remain four optically allowed levels, one of them
is degenerate with the two (±2,±2) states.

Similar to quantum well systems [24], the spins of the
particles forming doubly excited states become particularly
important, when using circularly polarized light. We calculated
the kIII response for circularly right-polarized (RRRR) pulses,
which create spin-up electrons and holes.

For system W only the NEE peak pattern changes with
respect to the linearly polarized (xxxx) configuration: the
peak corresponding to both excitons on one dot is missing due
to particle statistics. A similar situation arises for system S
(figure 5(b)): only the (2, 2) states can be optically created,
so the NEE response shows only one row of resonances, as
compared to 4 rows for linear polarization (figure 4(a)). The
TDHF response retains the peaks seen in figure 4(a). This
shows that, under some conditions, the TDHF spectra may
possess more peaks than the NEE ones.

(a)

(b)

Figure 5. Same as figure 4 but circularly polarized (R R R R) pulses.

5. Discussion

In section 4 we demonstrated that the NEE and the TDHF
spectra are different, both for the kI and kIII techniques. To
gain further insight into the origin of these differences, let
us consider a single QD with two spin-degenerate valence
and conduction orbitals. For this simpler system we can
derive an explicit expression for the anharmonicity matrix and
compare the TDHF and NEE response functions. For the
xxxx polarization the TDHF (NEE) kIII spectra show one
(two) peaks provided a �= 1 [44]. There are two optically
allowed single-exciton states with both spins either up or
down, and a common energy ε1 = −V eh, we also assume
they have a common decay rate γ1. The only double-exciton
state has energy εf = −4V eh + 2V ee + 2V hh. We denote
the wavefunction of a single-exciton state ei by ψei . For
this system the wavefunction projection on a pair of electron
and hole spin orbitals is simply ψei ,σeσh = δσeσeiδσhσhi . The
transition dipoles areμei = ∑

σe,σh
ψei ,σeσhμσeσh = 1√

2
μ0δσhiσei .

Thus the TDHF response function (13) simplifies to

STDHF
III (�3,�2, t1) = 1

2

−iμ4
0

�2 − 2ε1 + 2iγ1

1

(�3 − ε1 + iγ1)
2

×
∑

e1...e4

[
Ṽ (I − P)]e4e3e2e1

. (16)

Here the summations only run over the two bright states. The
anharmonicity matrix Ṽ for this system is diagonal

Ṽe4e3e2e1 = Ṽσe4σh4σe3σh3σe2σh2σe1σh1

= (
V ee(0)+ V hh(0)− 2V eh (0)

)

× δσe4σe2δσh4σh2δσe3σe1δσh3σh1 , (17)

which yields
∑

e1...e4
[Ṽ (I − P)]e4e3e2e1 = ∑

e1...e4
Ṽe4e3e4e3(I −

P)e4e3e2e1 . Equation (17) demonstrates that Ṽ measures the

6
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deviation of the double-exciton energy from twice the single-
exciton energy: V ee(0) + V hh(0) − 2V eh(0) = −(εf − 2ε1).
Given the form of the transition dipoles (section 4), we can
use a common index σ for optically created e–h pairs, and we
simplify (I−P)σe4σh4σe3σh3σe2σh2σe1σh1 = δσ1σ3δσ2σ4(1− δσ1σ2). We
finally obtain

STDHF
III (�3,�2, t1) = i

2

μ4
0

�2 − 2ε1 + 2iγ1

1

(�3 − ε1 + iγ1)
2

×
∑

σ1,σ2

(εf − 2ε1)
(
1 − δσ2σ1

)

= iμ4
0

�2−2ε1 + 2iγ1

εf−2ε1

(�3− (2ε1−ε1)+iγ1) (�3−ε1+iγ1)
.

(18)

This can be compared with the NEE result. The exact
doubly excited state is given by a direct product of the two
single excitations. We then have μgeμefμfe′μe′g = 1

4μ
4
0 and

equation (15) becomes

SNEE
III (�3,�2, t1) = iμ4

0

4

1

�2 − εf + iγfg

×
∑

e,e′

εf − 2εe′ + i
(
γe′g − γfe′

)

(�3 − (εf − εe′)+ iγfe′)
(
�3 − εe′ + iγe′g

)

= iμ4
0

�2−εf+iγfg

εf−2ε1 + i
(
γeg−γfe

)

(�3− (εf−ε1)+iγfe)
(
�3 − ε1+iγeg

) , (19)

where
∑

e,e′ 1 = 4 for summation over the singly excited
bright states. To compare equation (18) with (19) we assume
the following relations between decay rates of the density
matrix elements and of the single-exciton states: γfg = 2γ1,
γeg = γfe = γ1. Then the denominators of equations (18)
and (19) are identical only in the harmonic case, εf = 2ε1,
whereby STDHF

III (�3,�2, 0) = SNEE
III (�3,�2, 0) = 0. This

shows that even for a single QD (or a system of completely
decoupled QDs) the NEE and TDHF spectra are, in general,
different. A similar reasoning holds for the kI technique, with
the difference that for the harmonic case STDHF

I (�3, 0,�1) =
SNEE

I (�3, 0,�1), but they do not vanish, due to the PG−1 term
in equations (8) and (9).

To compare the kI and kIII techniques we consider system
W for a = 1, i.e., for symmetric interactions V eh = V ee =
V hh. As shown above, in this case the NEE kIII response
vanishes, while kI does not. This important difference is
easily rationalized using double-sided Feynman diagrams. We
choose the following single-exciton basis |eL,σ 〉 = c†

L,σd†
L,σ |g〉

and |eR,σ 〉 = c†
R,σd†

R,σ |g〉, where L and R indicate the two dots.
The remaining eigenstates are optically forbidden. The doubly
excited states are |eL,σ eL,−σ 〉, |eR,σ eR,−σ 〉 (excitons on the
same dot), and |eL,σ eR,σ ′ 〉 (excitons on different dots), while
|eL,σ eL,σ 〉 = |eR,σ eR,σ 〉 = 0. To calculate the energies of these
states we simply sum the Coulomb interactions of electrons
and holes. When the two excitons are on the same dot we
obtain εf1 = −4V eh(0) + V ee(0) + V hh(0), and for a = 1,
εf1 = −2V eh(0). In the same way, for the two excitons on
different dots we obtain εf2 = εf1 . All allowed single-exciton
states have energy −V eh(0), thus the energies are harmonic.

There are three types of diagrams pertinent to kI;
excited state absorption (figures 6(a), (c)), stimulated emission

(a) (b)

(c) (d)

Figure 6. Double-sided Feynman diagrams for the kI technique. For
a system with harmonic energy levels the diagrams cancel in pairs:
(a) cancels (b), and (c) cancels (d) except for the e = e′ case.

(figure 6(b)) and bleaching (figure 6(d)). During the time
delays t1 and t2, the evolution of the third-order density matrix,
represented by diagram (a) is identical to (b). The same holds
for (c) and (d), provided we neglect population relaxation in
states |e〉 and |g〉. For a = 1 we have εf = εe′ + εe, and
the evolutions during t3 are identical, too. Diagrams (a) and
(c) have one interaction on the bra, so that the sign of these
contributions is opposite to the sign of (b) and (d). Thus the
diagrams cancel in pairs, with one notable exception: if e =
e′, diagrams (a) and (c) do not contribute to the perturbative
series, because |ee〉 = 0, while (b) and (d) do contribute (see
appendix C for details). This shows that the kI response for
this ‘harmonic’ system does not vanish. The same reasoning
applies to kII.

We next turn to the kIII technique (figure 7). As for kI,
the pairs of diagrams (a), (b) and (c), (d) cancel for e �= e′.
This time, however, all four diagrams vanish for e = e′, i.e.,
the kIII signal will be zero for a ‘harmonic’ system, as for a
system of bosons. In this sense the kIII response is not affected
by quasiparticle statistics. This sets it apart from the kI and the
kII techniques.

We have used an approximate, few-parameter Hamiltonian
for two identical QDs. Our Coulomb parameters agree approx-
imately with the parameters extracted from pseudopotential
calculations for an asymmetrical pair of dots [38]. These cal-
culations predict large differences between the electron (t (1))
and heavy-hole (t (2)) hoppings. The TDHF and NEE spectra
change in function of t (2)/t (1), however, our main conclusion
regarding the comparison between TDHF and NEE is the same.

Finally we note that the factorization formula (5) is not
limited to e–h pairs and can be used for other types of
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(a)

(c)

(b)

(d)

Figure 7. Double-sided Feynman diagrams for the kIII technique.
For a harmonic system the diagrams cancel in pairs: (a) cancels (b),
and (c) cancels (d).

quasiparticles, such as soft and hard-core bosons (appendix A).
Consequently the response functions (10)–(12) with the
scattering matrix (9) can be used to describe the nonlinear
optical response of molecular vibrations or Frenkel excitons
in molecular aggregates

In conclusion, we have shown that the two-dimensional
spectra of single and double QDs, calculated within the TDHF
approach, do not properly account for the exciton–exciton
interactions. These interactions play an important role in the
interband nonlinear response of quantum dots. The number
and positions of peaks in the TDHF spectra are at variance
with results of exact (NEE) calculations. The features arising
from exciton statistics, i.e., the Pauli blocking nonlinearities,
are represented correctly. In the kIII spectra these features
vanish and so the response is entirely determined by Coulomb
interaction nonlinearities. The kIII technique thus clearly
demonstrates the limitations of the TDHF approach.
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Appendix A. Factorization of the Y variables

The EOM for excitations other then e–h pairs, share the same
form equation (3), (see also [45]). For each type of excitation

and the corresponding commutation rules, the operator P ,
derived from[

B̂m, B̂†
n

]
= δmn − 2

∑

kl

Pmknl B̂†
k B̂l, (A.1)

can be used to factorize the Y variables according to
equation (5). For free bosons Pmnpq = 0, so that Ymn =
〈Bm〉〈Bn〉. For hard-core bosons (Frenkel excitons) [46]
the commutation operator is Pmnpq = δmnδmqδnp and the
factorization

∑

pq

(I − P)mnpq

〈
Bp
〉 〈

Bq
〉 = Bm Bn − δmn Bm Bm,

is the same as for bosons, except for 〈Bm Bm〉, which must be
zero for hard-core bosons.

Appendix B. Symmetrization of Ṽ

The following property of Ṽ (I − P) is necessary to derive
equations (10)–(12)

[
Ṽ (I − P)]e4e3e2e1

= [
Ṽ (I − P)]e4e3e1e2

.

From the definition (4) one can verify that Pe4e3e2e1 = Pe4e3e1e2 ,
so that only Ṽe4e3e2e1 = Ṽe4e3e1e2 remains to be shown. We shall
prove this in the site basis; Ṽnmpq = Ṽnmqp. The anharmonicity
Ṽ appears in the summation

∑
nkl Ṽmnkl B†

n Bk Bl , equation (6).
Thus, even if Ṽmnkl is not symmetric in the last two indices, it
can be symmetrized

∑

nkl

Ṽmnkl B∗
n Bk Bl =

∑

nkl

1
2

(
Ṽmnkl + Ṽmnlk

)
B∗

n Bk Bl.

This reasoning applies to e–h pairs as well as other types of
quasiparticles discussed in appendix A.

Appendix C. Excitation statistics

Diagrams (a) and (c) in figure 6 and all diagrams in figure 7
contain the following sequence of actions on the ground state:
Be′′ B†

e B†
e′ |g〉, where e, e′ and e′′ are singly excited states (we

assume that e �= e′, otherwise the diagram’s contribution is
zero). The diagrams have been drawn assuming

Be′′ B†
e B†

e′ |g〉 = δe′e′′ B†
e |g〉 + δee′′ B†

e′ |g〉 . (C.1)

This obviously holds for soft- and hard-core bosons. If de-
excitation of B†

e B†
e′ |g〉 leads to states other than B†

e |g〉 or
B†

e′ |g〉 , then the diagrams become more complicated. We
show that this does not take place for e–h pairs when using
system W and the basis considered in section 5. In this case
B†

e = c†
e1

d†
e2

(same for B†
e′′ and B†

e′), where e1 (e2) indicate
the electron’s (hole’s) position and spin projection. (We use
e1,2 instead of the m1,2 subscripts introduced in section 2, to
emphasize that we deal with single-exciton eigenstates of the
system.) From equations (A.1) and (4) we obtain

Be′′ B†
e B†

e′ |g〉 = δe′e′′ B†
e |g〉 + δee′′ B†

e′ |g〉
− 2

∑

kl

Pe′′kel B̂
†
k B̂l B

†
e′ |g〉

= δe′e′′ B†
e |g〉 + δee′′ B†

e′ |g〉
− δe′′

1e′
1
δe′′

2e2 c†
e1

d†
e′

2
|g〉 − δe′′

1 e1δe′′
2 e′

2
c†

e′
1
d†

e2
|g〉 . (C.2)
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The last two terms correspond to the two possibilities of
annihilating the electron from one exciton and the hole from
the other exciton. However, since Be′′ corresponds to an optical
transition, the electron and hole it annihilates must reside on
the same site and have the same spin projection. This can not
be satisfied simultaneously with e �= e′, given that B†

e and
B†

e′ correspond to optical excitations. The diagrams shown in
figures 6 and 7 are thus the only ones arising for electron–hole
pairs for the kI and kIII techniques, under the assumption that
|f〉 = |ee′〉 and within the rotating wave approximation.
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